Hallo
Aus f(xi) = 1 folgt 4xi -xi^3 = 1 => xi^3 -4 xi +1 = 0
Für x^3 +p x +q = 0 und
p < 0 und
| q/2 / ( (-p/3)^3 )^0.5 | < 1 lautet die Lösungsformel:
für j = 0..2
xi1,2,3 = 2 * ( 4/3 )^0.5 * cos (j*120° + 1/3 arccos ( -1/2 / ( (4/3)^3 ) ^0.5 ) ) für j = 0..2
xi1,2,3 = (16/3)^0.5 * cos (j*120° +1/3 arccos ( -1/2 * (27/64 )^0.5 ) für j = 0..2
xi1,2,3 = (16/3)^0.5 * cos (j*120° +1/3 arccos ( - (27/256 )^0.5 ) für j = 0..2
xi1,2,3 = (16/3)^0.5 * cos (j*120° +1/3 * 108.9510066° ) für j = 0..2
xi1,2,3 = (16/3)^0.5 * cos (j*120° +36.3170022° ) für j = 0..2
xi1 = (16/3)^0.5 * cos ( 36.3170022° )
xi2 = (16/3)^0.5 * cos ( 156.3170022° )
xi3 = (16/3)^0.5 * cos ( 276.3170022° )
xi1 = +1.860805853
xi2 = -2.114907541
xi3 = +0.254101688
Probe:
f(xi1) = 1
f(xi2) = 1
f(xi3) = 1