0 Daumen
702 Aufrufe

1) Wie komme ich durch Ableitung von s=s (t) auf die       Beschleunigungs- bzw. Geschwindigkeitsfunktion?

2) Wie muss ich a=a (t) integrieren um wieder auf die Geschwindigkeits- bzw. Wegfunktion komme?

Ich kenne die Grundlagen der Differential- und Integralrechnung,  aber hier steh ich auf der Leitung!

Ich bin über jede Hilfe dankbar!

Avatar von

1 Antwort

0 Daumen

1) Wie komme ich durch Ableitung von s=s (t) auf die       Beschleunigungs- bzw. Geschwindigkeitsfunktion?

2) Wie muss ich a=a (t) integrieren um wieder auf die Geschwindigkeits- bzw. Wegfunktion komme?

Ich kenne die Grundlagen der Differential- und Integralrechnung,  aber hier steh ich auf der Leitung!

Die Aufgabe behandelt die Differential und Integralrechnung
an einem Beispiel aus der Physik

Weg / Zeitzusammenhang bei einer gleichförmig beschleuingten
Bewegung z.B. dem freien Fall
s = Weg
a = Bescheunigung
t = Zeit
s ( t ) = 1 / 2  * a * t^2

1.Ableitung
s ´ ( t ) = 1/ 2 * a * 2 * t = a * t
Die Steigung der Funktion s ( t ) = ...
ist die Geschwindigkeit v ( t ) = s ´( t )
v ( t ) = a * t

2.Ableitung
s ´´ ( t ) = ( a * t ) ´ = a
Die 2. Ableitung bei einer gleichförmig beschleunigten
Bewegung ist a.

durch Integrieren kommt man von der 2.Ableitung -> 1.Ableitung ->
auf die Ausgangsfunktion.

∫ a dt = a * t
∫ a * t  dt = 1 /2 * a * t^2


Avatar von 123 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community