f '(x) = -sin(x)
f ''(x) = -cos(x)
f ''' (x) = sin(x)
Extrema
f' (x) = 0 ∧ f ''(x) ≠ 0
f '(x) = -sin(x) = 0 --> x = 0 +n π --> x1=0, x2= π, x3= 2π
f ''(0) = -cos(0) = -1 --> HP
f ''(π) = -cos(π) = 1 --> TP
f ''(2π) = -cos(2π) = -1 --> HP
f (0) = 1+cos(0) = 2
f (π) = 1 +cos(π) = 1 - 1 = 0
TP(π / 0)
HP1( 0/ 2), HP2(2π/2)
Wendepunkte
f '' (x) = -cos(x) = 0 --> x = 0,5 π + n π
f '''(0,5π) = sin(0,5π) = 1 ≠ 0
f (0,5π) = 1+cos(0,5π) = 1
WP1(0,5π / 1), WP2=(1,5π / 1)