f(x) = 2·x^3 + 3·x^2 - 12·x + 10
f'(x) = 6·x^2 + 6·x - 12
f''(x) = 12·x + 6
Extrempunkte f'(x) = 0
6·x^2 + 6·x - 12 = 0
x = -2 ∨ x = 1
f(- 3) = 19 -->
f(- 2) = 30 --> Lokales Maximum
f(1) = 3 --> Lokales und globales Minimum
f(3) = 55 --> Globales Maximum
Wendepunkte f''(x) = 0
12·x + 6 = 0
x = - 0.5
f(- 0.5) = 16.5