0 Daumen
768 Aufrufe

Ich muss folgende Brüche mit komplexen Zahlen in die Form x+iy bringen, habe nur leider keine Idee diese zu berechnen:

1.

((1+i)/(1-i))k

2.

√((1/2)-((√(3)/2)i))

Ich wäre sehr dankbar, falls mir jemand helfen könnte!

Avatar von

1 Antwort

0 Daumen
Bei erstens hast du die 3. binomische formel innerhalb der klammer stehten also (a+b)(a-b)= a²+b²
das ergibt dann (1²-i²)k da i²=-1 ist das also dasselbe wie
(1-(-1))k und das ist (1+1)k und das ist (2)k

also 2k

am einfachsten löst du das ganze also wenn du früh i²=-1 einsetzt.

Avatar von

ach ja und um es in die richtige form zu bringen entspricht das 2k+0i

In der Klammer steht keine binomische Formel.

Es ist zwar richtig, dass man sinnvollerweise zuerst den Inhalt der Klammer betrachtet. Da steht aber nicht das Produkt von (1+i)  und  (1-i)  , sondern der Quotient davon.  Diesen muss man zunächst mal ausrechnen. Das Ergebnis ist ein sehr einfacher komplexer Zahlenwert. Nachher kann man diesen mit dem Exponenten k potenzieren.  Falls k ganzzahlig ist, kommen als Werte nur genau 4 Ergebnisse in Frage.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community