Geben Sie zwei konvergente Folgen (an )n∈N und (bn )n∈N an, so dass an < bn für alle n∈N, aber lim (n→∞) an ≥ lim (n→∞) bn ist.
Kann ich hier irgendwelche Folgen angeben oder gibt es hier eine bestimmte?
Du kannst irgendetwas erfinden.
Mein Beispiel:
(an) mit an: = 1/(n+2)
(bn) mit bn: = 1/(n+1)
Mir kam die Frage einfach seltsam vor. Konnte halt nicht so recht glauben, dass ich das frei erfinden kann.
Ja kannst du. Kleiner Tipp:
\( \lim \limits_{n \to \infty} a_n \geq \lim \limits_{n \to \infty} b_n \) wird auch durch den Fall \( \lim \limits_{n \to \infty} a_n = \lim \limits_{n \to \infty} b_n \) abgedeckt.
Gruß
Du willst sagen, dass ich zwei gleiche Folgen nehmen kann?
Nein,
aber dass du 2 Folgen nehmen kannst die den selben Grenzwert haben gliedweise die eine Folge aber kleiner als die andere ist.
Okay, danke, jetzt ist es klar!
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos