+1 Daumen
2k Aufrufe

Bestimmen Sie für die Primzahlen p=3,5,7,11,13. welche Kongruenzklassen

[a]∈Fp =Z/pZ,   0<a<p

Quadrate sind, indem sie jeweils eine Tabelle aller quadratischen Kongruenzklassen [b]^2 erstellen. Für p=5 sieht eine derartige Tabelle etwa so aus:

[b]     1. 2. 3. 4.

[b]^2. 1. 4. 4. 1

Fällt Ihnen etwas über die Anzahl der Quadrate in Abhängigkeit von p auf?

Muss ich jetzt einfach p=13 nehmen, und in der Tabelle von b=1-12 die Quadratzahlen im Körper 13 einsetzen? Ist das dann schon wirklich alles? Oder muss ich noch mehr machen?

Avatar von

2 Antworten

+2 Daumen
Ich habe das Gefühl, dass du genau das machen musst.
Avatar von 289 k 🚀

Okay, danke für die Bestätigung.

+2 Daumen

ja genau so sollst du vorgehen. Dir müsste auch was auffallen bezüglich der Anzahl der Quadratzahlen wenn du dies für alle geforderten Primzahlen durchführst.

Gruß

Avatar von 23 k

Danke auch an dich. Bisher fällt mir noch nichts besonderes auf. Aber ich werde nochmal drüber nachdenken.

Kann mir jemand eventuell erklären, wie man die erste Tabelle errechnet? Ich verstehe nicht, wie man auf die Werte kommt.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community