Wie löst man Betragsgleichungen? Ich finde einfach keinen Anfang zum beandeln der Gleichung. Kann mir jemand genau sagen, WAS man macht und WARUM.. Danke :D
Bsp.: 5- l 4+2xl= -11
Allgemein zum Betragszeichen | | oder abs ()
| Term | Ist der Term größer 0 können die Betragszeichen entfallen.| Term | = Term| 3 | = 3Ist der Term kleiner 0 ( negativ ) würden die Betragszeichenden Term ins positive wandeln.Dies entspricht einer Multiplikation mit (-1)| Term | = Term * (-1)| -3 | = (-3) * (-1) = 3
Forme erstmal aum:
5-|4+2x| = -11 |+Betrag + 11
|4+2x| = 16
Nun musst Du folgendes Wissen: Der Betrag kann weggelassen werden, wenn der Inhalt positiv ist. Er muss berücksichtigt werden, wenn er negativ ist. Berücksichtigt insofern, dass er durch eine Minusklammer aufgelöst wird, dann wird ja der Inhalt positiv, wenn er zuvor negativ war ;).
1. Fall: 4+2x≥0
4+2x = 16
2x = 12
x = 6
2. Fall: 4+2x<0
-(4+2x) = 16
4+2x = -16
2x = -20
x = -10
Grüße
5−∣4+2x∣=−115- | 4+2x|= -115−∣4+2x∣=−11
∣4+2x∣=16 | 4+2x|=16 ∣4+2x∣=16
2•∣2+x∣=16 2•| 2+x|=16 2•∣2+x∣=16
∣x+2∣=8∣2 | x+2|=8 |^{2} ∣x+2∣=8∣2
x2+4x+4=64x^2+4x+4=64x2+4x+4=64
x2+4x=60x^2+4x=60x2+4x=60
(x+42)2=60+(42)2=64∣ (x+ \frac{4}{2})^2=60+ (\frac{4}{2})^2=64 | \sqrt{~~}(x+24)2=60+(24)2=64∣
1.)
x+2=8x+ 2=8 x+2=8
x1=6x_1=6 x1=6
2.)
x+2=−8x+ 2=-8 x+2=−8
x2=−10x_2=-10 x2=−10
Eine Probe mittels Einsetzen gibt Sicherheit, ob die Lösungen stimmen.
5 - |4 + 2·x| = -11
16 = |4 + 2·x|
Es gibt also 2 Fälle
4 + 2·x = 16 oder 4 + 2·x = -16
Beides kannst du nach x auflösen.
mache ich das immer so, dass ich einfach einmal das vorzeichen umdrehe?
wenn
|x| = a
sein soll gibt es immer zwei Lösungen
x = a und x = -a
Da.h. in diesen Fällen kann man das so lösen.
- |2 + 3/2·x| + 2 < -9
11 < |2 + 3/2·x|
2 Fälle
2 + 3/2·x > 11 --> x > 6
2 + 3/2·x < -11 --> x < - 26/3
hört sich so erstmal ja ganz einfach an .. mal gucken wie es mit dem Anweden aussieht ;D DANKE
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos