Aufgabe - Skalarprodukt:
Sei \( V:=\left\{p:[0,1] \rightarrow \mathbb{R}: x \mapsto a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\} \) der Raum aller Polynome auf \( [0,1] \) mit Grad maximal 2. Sei auf \( V \) das Skalarprodukt \( \langle p \mid q\rangle:=\int \limits_{0}^{1} p(x) q(x) \mathrm{d} x \) für \( p, q \in V \) definiert. Seien \( p_{1}, p_{2}, p_{3} \in V \) definiert durch \( p_{1}(x):=x^{2}+x, p_{2}(x):=x-1 \), \( p_{3}(x):=x^{2}+2 x+1 \)
(a) Bilden \( p_{1} \) und \( p_{3} \) eine Basis für \( V \)?
(b) Bestimmen Sie eine Basis von \( V \). Bestimmen Sie eine Basis von \( \{p \in V \mid p(1)=0\} \).
(c) Bestimmen Sie die Skalarprodukte \( \left\langle p_{1} \mid p_{2}\right\rangle,\left\langle p_{1} \mid p_{1}\right\rangle \) und \( \left\langle p_{2} \mid p_{2}\right\rangle \). Entscheiden Sie mittels der Schwarzschen Ungleichung, ob \( p_{1} \) und \( p_{2} \) linear abhängig sind.