Der reguläre Weg wäre denke ich über die partielle Integration. Wenn du trotzdem noch die Umformung brauchst sag bescheid. Ich würde das aber eben über die partielle lösen.
∫ COS(x)^2 dx
∫ COS(x)·COS(x) dx
Partielle Integration ∫ u'·v = u·v - ∫ u·v'
∫ COS(x)·COS(x) dx = SIN(x)·COS(x) - ∫ COS(x)·(-SIN(x)) dx
∫ COS(x)·COS(x) dx = SIN(x)·COS(x) + ∫ SIN(x)·SIN(x) dx
∫ COS(x)^2 dx = SIN(x)·COS(x) + ∫ SIN(x)^2 dx
∫ COS(x)^2 dx = SIN(x)·COS(x) + ∫ (1 - COS(x)^2) dx
∫ COS(x)^2 dx = SIN(x)·COS(x) + ∫ 1 dx - ∫ COS(x)^2) dx
2·∫ COS(x)^2 dx = SIN(x)·COS(x) + x
∫ COS(x)^2 dx = 1/2·x + 1/2·SIN(x)·COS(x)