A = [200/650, 170/550, 110/500; 130/650, 90/550, 140/500; 150/650, 40/550, 30/500]
A = [4/13, 17/55, 11/50; 1/5, 9/55, 7/25; 3/13, 4/55, 3/50]
Es gilt:
A·p + m = p
m = (E - A)·p
p = (E - A)^{-1}·m
E - A = [1, 0, 0; 0, 1, 0; 0, 0, 1] - [4/13, 17/55, 11/50; 1/5, 9/55, 7/25; 3/13, 4/55, 3/50]
E - A = [9/13, - 17/55, - 11/50; - 1/5, 46/55, - 7/25; - 3/13, - 4/55, 47/50]
(E - A)^{-1} = [45630/24217, 18265/24217, 16120/24217; 45155/72651, 35750/24217, 42515/72651; 37100/72651, 7250/24217, 92450/72651]
m = [170; 190; 280·1.83] = [170; 190; 512.4]
p = [45630/24217, 18265/24217, 16120/24217; 45155/72651, 35750/24217, 42515/72651; 37100/72651, 7250/24217, 92450/72651] * [170; 190; 512.4]
p = [804.6966180; 685.9993117; 795.7341261]
PS: Ich habe hier mit der korrekten Inversen und nicht mit der Näherung gerechnet. Die Näherung wäre die 2. gegebene Inverse gewesen.