4.0 Gegeben sind die Parabeln \( p_{1} \) mit \( y=0,5 x^{2}+0,5 x+1,125 \) und \( p_{2} \) mit \( y=x^{2}- \) \( 1 x+2,25 \)
4.1 Ermittle die Koordinaten der Scheitelpunkte \( S_{1} \) und \( S_{2} \) und zeichne die beiden Parabeln in ein Koordinatensystem.
Für die Zeichnung: Längeneinheit \( 1 \mathrm{~cm} ;-3 \leqq x \leqq 5 ;-2 \leq y \leqq 6 \).
4.2 Zeige rechnerisch, dass sich die beiden Parabeln berühren und gib die Koordinaten des Berührpunktes \( B \) an.
4.3 Überprüfe durch Rechnung, ob \( B, S_{1} \) und \( S_{2} \) auf einer Geraden liegen, und berechne \( \overline{S_{1} B} \) bzw. \( \overline{S_{2} B} \). Erkläre die gefundenen Werte geometrisch.
4.4 Zeige rechnerisch, dass die Gerade \( g \) mit der Steigung \( m=2 \) durch den Punkt \( B \) eine Tangente an beide Parabeln ist.