Hallo,
Bernoulli -Differentialgleichung :
\( \frac{y^{\prime}}{y^{2}}+\frac{4}{x} * \frac{1}{y}=x^{3} \)
allgemeine Struktur: \( y^{\prime}+g(x) y=h(x) \cdot y^{n} \)
multipliziere mit \( y^{2} \) :
y' +y*\( \frac{4}{x} \)= \( x^{3} \)*\( y^{2} \) (1)
---->\( n=2 \):
\( \begin{array}{l}z=\frac{y}{y^{n}}=\frac{1}{y} \\ y=z^{\frac{1}{1-n}}=\frac{1}{z}\end{array} \)
\( \begin{array}{l}y^{\prime}=\frac{1}{1-n} z^{\frac{n}{1-n}} \cdot z^{\prime} \\ y^{\prime}=-z^{-2} \cdot z^{\prime}\end{array} \)
y und y' einsetzen in(1):
\( \begin{array}{rl} -z^{-2} y^{\prime}+\frac{4}{z x}=x^{3} \cdot z^{-2} & | \cdot\left(-z^{2}\right) \\ y^{\prime}-\frac{4 z}{x}=-x^{3} & g(x)=-\frac{4}{x} \\ & s(x)=-x^{3} \end{array} \)
Variation der Konstanten:
\( \int g(x) d x=\int-\frac{4}{x} d x=-4 \ln |x| \)
\( \begin{array}{l} \int s(x) e^{\int g(x) d x}=\int\left(-x^{3}\right) \cdot e^{-4 \ln |x|} d x \\ =\int\left(-x^{3}\right) \cdot \frac{1}{x^{4}} d x=\int-\frac{1}{x} d x \\ =-\ln (x) \\ \text { allgemein: } z=e^{-\int g(x) d x}\left[\int s (x) \cdot e^{\int g(x) d x} d x+c\right] \\ z=x^{4}[-\ln (x)+c] \\ \end{array} \)
Resubstitution: \( z=\frac{1}{y} \)
\( \begin{array}{l} \frac{1}{y}=x^{4}(-\ln (x)+c) \\ y=\frac{1}{x^{4}(-\ln (x)+c)} \end{array} \)