∫ 1/(SIN(x) + COS(x)) dx
Substitution:
z = x/2 + pi/8
x = 2·z - pi/4
1·dx = 2·dz
∫ 1/(SIN(2·z - pi/4) + COS(2·z - pi/4)) 2·dz
2·∫ 1/(SIN(2·z - pi/4) + COS(2·z - pi/4)) dz
SIN(2·z - pi/4) = SIN(2·z)·COS(pi/4) - COS(2·z)·SIN(pi/4) = √2/2·SIN(2·z) - √2/2·COS(2·z)
COS(2·z - pi/4) = COS(2·z)·COS(pi/4) + SIN(2·z)·SIN(pi/4) = √2/2·COS(2·z) + √2/2·SIN(2·z)
SIN(2·z - pi/4) + COS(2·z - pi/4) = (√2/2·SIN(2·z) - √2/2·COS(2·z)) + (√2/2·COS(2·z) + √2/2·SIN(2·z)) = √2·SIN(2·z)
2·∫ 1/(√2·SIN(2·z)) dz
√2·∫ 1/SIN(2·z) dz
Kommst du ab hier alleine weiter ?