Ich glaube fast, dass du da etwas verwechselt hast - typischerweise unterscheidet man zwei Formen:
D=R\{2}
D={x∈R|x≠2}
Die kurze Form ist in diesem Fall völlig ausreichend. Die längere brauchst du eigentlich nur, sobald die Menge der ausgeschlossenen Zahlen größer wird, willst du z.B. nur alle ungeraden, natürlichen Zahlen haben, dann wäre das
D={x∈N|¬∃k∈N: 2k=x}
wohingegen du in der Kurzfassung entweder unendlich viele Werte ausschließen musst, oder quasi einen "intelligenten" Leser brauchst, der ausgehend von der Angabe
D=N\{0, 2, 4, ...}
in der Lage ist, das Schema weiter anzuwenden und alle ganzen Zahlen auszuschließen.
Zu der zweiten Sache hat ja Thilo87 eigentlich schon alles gesagt, was nötig ist - man könnte diese Schreibweise z.B. dann benutzen, wenn man mehrere Funktionen betrachtet, die unterschiedliche Definitionsbereiche haben.
Allerdings würde ich dann entweder unterschiedliche Buchstaben für die Definitionsbereiche benutzen oder das f als tiefgestellten Index hinter das D schreiben - D(f) suggeriert, dass es sich dabei um eine Abbildung handelt oder um etwas, dass irgendwie von der Funktion f abhängt. In Wirklichkeit ist es ja aber nur eine Menge.