Aufgabe:
(a) Es seien \( F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \) und \( G: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \) zwei lineare Abbildungen, die durch
\( F\left(\left[\begin{array}{l} x \\ y \\ z \end{array}\right]\right)=\left[\begin{array}{c} y \\ x+z \end{array}\right] \text { und } G\left(\left[\begin{array}{l} x \\ y \\ z \end{array}\right]\right)=\left[\begin{array}{c} 2 z \\ x-y \end{array}\right] \)
definiert sind. Geben Sie Formeln an für die folgenden Abbildungen:
(i) \( F+G \)
(ii) \( 3 F-2 G \)
(b) Es sei \( \left\{a_{1}, a_{2}\right\} \) eine Basis des \( \mathbb{R}^{2} \). Gibt es eine lineare Abbildung \( F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \) mit den Eigenschaften
\( F\left(a_{1}+a_{2}\right)=a_{1}, F\left(a_{1}-a_{2}\right)=a_{1}, F\left(5 a_{1}+a_{2}\right)=a_{1} ? \)
Berechnen Sie - falls möglich \( -F\left(a_{1}\right) \) und \( F\left(a_{2}\right) \). Begründen Sie Ihre Aussagen.
(c) Geben Sie eine lineare Abbildung \( f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4} \) an, für die gilt
\( \operatorname{Bild}(f)=\left\langle\left[\begin{array}{r} 1 \\ 2 \\ 0 \\ -4 \end{array}\right] \cdot\left[\begin{array}{r} 2 \\ 0 \\ -1 \\ 3 \end{array}\right]\right\rangle \)