Koordinaten des Scheitels in Abhängigkeit von \(k\) berechnen:
\(y= 2x^2+k*x- \frac{k^2}{2} +2,5 |:2 \)
\(\frac{y}{2}= x^2+\frac{k}{2}*x- \frac{k^2}{4} +\frac{5}{4} |+\frac{k^2}{4}-\frac{5}{4} \)
\(\frac{y}{2}+\frac{k^2}{4}-\frac{5}{4} = x^2+\frac{k}{2}*x \)
\(\frac{y}{2}+\frac{k^2}{4}-\frac{5}{4}+(\frac{k}{4})^2 = (x+\frac{k}{4})^2 \)
\(\frac{y}{2}+\frac{4k^2}{16}-\frac{5}{4}+\frac{k^2}{16} = (x+\frac{k}{4})^2 \)
\(\frac{y}{2}+\frac{5k^2}{16}-\frac{5}{4} = (x+\frac{k}{4})^2 |*2 \)
\(y+\frac{5k^2}{8}-\frac{5}{2} = 2*(x+\frac{k}{4})^2 |+\frac{5}{2} -\frac{5k^2}{8} \)
\(y = 2*(x+\frac{k}{4})^2+\frac{5}{2}-\frac{5k^2}{8} \)
\(S(-\frac{k}{4}|\frac{5}{2}-\frac{5k^2}{8})\)