f ( x , y ) = x3 + 6xy2 - 2y3 - 12x
fx ´= 3*x^2 + 6y^2 - 12
fy ´= 12xy - 6y^2
Punkte mit waagerechter Tangente in beide Richtungen
3*x^2 + 6y^2 - 12 = 0
12xy - 6y^2 = 0
---------------------
12xy = 6y^2
12x = 6y
x = 0.5y
3*(0.5y)^2 + 6y^2 = 12
0.75y^2 + 6y^2 = 12
6.75y^2 = 12
y = 4/3
y = -4/3
12x(4/3) - 6(4/3)^2 = 0
16x - 96/9 = 0
x = 2/3
( 4/3 | 2/3 )
12x(-4/3) - 6(-4/3)^2 = 0
-16x - 96/9 = 0
x = - 2/3
( -4/3 | -2/3 )
fx ´´= 6*x
fy ´´= 12x - 12y
( 4/3 | 2/3 )
fx ´´( 4/3 )= 6*4/3 = 24/3
fy ´´= 12*4/3 - 12*2/3 = 24/3
Beides positiv, Tiefpunkt
( -4/3 | -2/3 )
fx ´´( -4/3 )= 6*(-4/3) = -24/3
fy ´´= 12*(-4/3) - 12*(-2/3) = -24/3
Beides negativ, Hochpunkt