Aufgabe:
Ein Unternehmen stellt in einem dreistufigen Produktionsprozess aus Materialien \( M_{1} \), \( M_{2}, M_{3} \) die Zwischenprodukte \( Z_{1}, Z_{2}, Z_{3} \), aus diesen die Halbfabrikate \( \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4} \) und aus diesen die Endprodukte \( E_{1} \) und \( E_{2} \) her. Die Matrizen der Verbrauchskoeffizienten in den drei Produktionsstufen lauten:
1. Stufe: \( \left(\begin{array}{lll}1 & 4 & 2 \\ 2 & 3 & 1 \\ 0 & 2 & 3\end{array}\right) \) (ME/ME)
2. Stufe: \( \left(\begin{array}{llll}1 & 3 & 2 & 1 \\ 1 & 0 & 2 & 4 \\ 2 & 1 & 2 & 1\end{array}\right) \) (ME/Stück)
3. Stufe: \( \left(\begin{array}{ll}2 & 2 \\ 4 & 3 \\ 2 & 2 \\ 6 & 1\end{array}\right) \) (Stück/Stück)
(a) Berechnen Sie die Matrix der Materialverbrauchskoeffizienten für die Endprodukte.
(b) Welche Materialmengen werden benötigt, um 150 Stück von \( E_{1} \) und 90 Stück von \( E_{2} \) zu produzieren und außerdem vom Zwischenprodukt \( Z_{2} 40 \mathrm{ME} \) sowie von den Halbfabrikaten \( \mathrm{H}_{2} \) und \( \mathrm{H}_{3} \) jeweils 30 Stück auf Lager zu nehmen?