zweiter Versuch :
$$ f(x)= (x-1)^2 \cdot (x-2t) $$
$$ f(x)= u\cdot v $$
$$ f'(x)= u'v + uv' $$
$$ f'(x)= 2 (x-1) \cdot 1 \cdot (x-2t) + (x-1)^2 \cdot 1 $$
$$ f'(x)= 2 (x-1) \cdot (x-2t) + (x-1)^2 $$
$$ f'(x)= (x-1)\cdot \left( 2 \cdot (x-2t) + (x-1)\right) $$
$$ f'(x)= (x-1)\cdot \left( 2 x-4t + x-1\right) $$
$$ f'(x)= x\cdot \left( 2 x-4t + x-1\right) - \left( 2 x-4t + x-1\right) $$
$$ f'(x)= \left( 2 x^2-4tx + x^2-x\right) - \left( 3 x-4t -1\right) $$
$$ f'(x)= 3 x^2-4tx -x - 3 x+4t +1 $$
$$ f'(x)= 3 x^2-4tx - 4 x+4t +1 $$
$$ f'(x)= 3 x^2-4x (t-1)+4t +1 $$
$$ f'(x)= 3 x^2+4x (1-t)+4t +1 $$