zweiter Versuch :
f(x)=(x−1)2⋅(x−2t)
f(x)=u⋅v
f′(x)=u′v+uv′
f′(x)=2(x−1)⋅1⋅(x−2t)+(x−1)2⋅1
f′(x)=2(x−1)⋅(x−2t)+(x−1)2
f′(x)=(x−1)⋅(2⋅(x−2t)+(x−1))
f′(x)=(x−1)⋅(2x−4t+x−1)
f′(x)=x⋅(2x−4t+x−1)−(2x−4t+x−1)
f′(x)=(2x2−4tx+x2−x)−(3x−4t−1)
f′(x)=3x2−4tx−x−3x+4t+1
f′(x)=3x2−4tx−4x+4t+1
f′(x)=3x2−4x(t−1)+4t+1
f′(x)=3x2+4x(1−t)+4t+1