0 Daumen
1,8k Aufrufe

Aufgabe 12 - Ableitungen von e-Funktionen:

a) Ordnen Sie die Funktionsgraphen den Funktionsgleichungen zu.

\( f_{1}(x)=2 e^{x} \)

\( f_{2}(x)=e^{2} \)

\( f_{3}(x)=e^{x-2} \)

\( f_{4}(x)=0,5 e^{x}-3 \)

blob.png

Durch welche geometrischen Abbildungen gehen diese jeweils aus dem Graphen von \( f(x)=e^{x} \) hervor?

b) Bestimmen Sie die Ableitungen und zeichnen Sie deren Graphen.

c) Wie unterscheiden sich die Ableitungsgraphen von dem Graphen der Ableitung von \( f(x)=e^{x} \) ?

Aufgabe 13 - Ableitungen:

ErlĂ€utern Sie, wie man den Graphen von \( f(x)=e^{x} \), „bewegen“ muss, um die Graphen der angegebenen Funktionen zu erzeugen. Geben Sie zudem die zugehörige Ableitung an.

a) \( f(x) = -e^{x}+5 \)

b) \( f(x)=0,1 \cdot e^{x+6} \)

c) \( f(x)=\left(\frac{1}{e}\right)^{x}-e \)

d) \( f(x)=-e^{-x} \)

Avatar von

Wie man vom Graphen von f(x) zum Graphen von f'(x) kommt:

Bei 13a) muss der Graph von f(x) um -5 in y-Richtung verschoben werden.

Bei 12.4. muss der Graph von f(x) um +3 in y-Richtung verschoben werden.

Bei 12.1. und 13.b) stimmen der Graph von f(x) und f ' (x) ĂŒberein.

Mehr, wenn alle Ableitungen vorhanden sind.

Ableitung von f1(x)=2*e^x Von f2(x)= -2e^x f3(x) = e^{x-2} Ableitung von 0.5e^x +3 = 0.5e^x

Bild Mathematik

https://www.matheretter.de/tools/funktionsplotter/

e^{2x + ln(2)}   blau

2e^{2x}           rot

e^2x    lila

2e^{2x - ln(2)} grĂŒn

Da blau und rot, sowie lila und grĂŒn zusammenfallen, siehst du, dass man da auch Verschiebungen parallel zur x-Achse drinn hat.

Jetzt könntest du ja deine Ableitungen im Plotter eingeben und den Exponenten etwas abÀndern.

2 Antworten

0 Daumen

ich mach mal ein Beispiel aus der Nummer 13.

$$0,1*{ e }^{ x+6 }$$

Um den Graph dieser Funktion aus dem Graph der Funktion $${e}^{x}$$ zu erhalten, musst du den Graphen in y-Richtung mit dem Faktor 0,1 stauchen und den Graph um 6 Einheiten auf der x-Achse nach links verschieben.

So Àhnlich funktioniert das auch mit den anderen 3 Aufgaben ;)

Gruß
EmNero

Avatar von 6,0 k

Zu 2. Die Funktion $$f(x)={e}^{x+6}$$ liefert fĂŒr x=-6 den selben Wert wie $$g(x)={e}^{x}$$ fĂŒr den Wert x=0. -6 liegt links von 0, deswegen ist der Graph nach links verschoben worden.

Allgemein kann man sagen, daas wenn man zu x etwas addiert der Graph nach links und wenn man von x etwas subtrahiert der Graph nach rechts verschoben wird.

Gruß
EmNero

12b) Die Ableitungsfunktionen bestimmen.

12c) Untersuchen, wie diese durch Verschiebung aus der Ableitungsfunktion von $${e}^{x}$$ hervorgehen

Sorry meinte nicht 12 und c sondern die Aufgabe a den unteren Teil " welche Geometrische Abbildungen.."

Das bedeutet wie du den Graph ex verschieben/strecken/stauchen musst, um diese Graphen zu erhalten.

Wo liegt den der zusammenhang zwischen der Verschiebung und der Geometeischen Abbildung

Naja verschieben, spiegeln, strecken, stauchen sind sozusagen geometrische Abbildungen ^^

0 Daumen

a) f(x) = -e^x + 5 aus g(x) = e^x erzeugen:

1. g spiegeln an der x-Achse -----> h mit h(x) = -e^x

2. h(x) um +5 Einheiten parallel zur y-Achse verschieben → f

3. Da f ' (x) = h(x) , hat man nach 1. bereits f ' (x).

b)

f(x) = 0.1 * e^{x+6}

1. Möglichkeit (analog zu dem, was du bei der Scheitelpunktform von Parabelgleichungen gelernt hattest)

1. g(x) um -6 parallel zur x-Achse verschieben.

2. Mit dem Faktor 0.1 in y-Richtung stauchen.  ------> f(x). Hier zufÀllig gerade auch f '(x).

2. Möglichkeit. Umformung. 0.1 = e^ ( ln (0.1))

f(x) = e^ (ln(0.1)) * e^{x+6} = e^ ( x + 6 + ln(0.1))

Somit einfach g(x) um -6 - ln(0.1) in x-Richtung verschieben.

Analog bei den andern Aufgaben.

Avatar von 162 k 🚀

Auch wenn es dreist erscheint, könntest du mir die anderen beiden Aufgaben auch noch machen?, oder zumindest eine Ă€hnliche Aifhane mit der ErklĂ€rung was in der Aufgabe ĂŒbehautp genau verlangt wird. ln hatten wir noch nicht.

Lies hier https://www.matheretter.de/wiki/quadratische-funktionen

Zusammenfassung des Wissens ĂŒber quadratische Funktionen. https://www.matheretter.de/wiki/quadratische-funktionen

Da wird erklĂ€rt, was Stauchung und Verschiebung ist. So schön ist das in einer Antwort hier nicht möglich. Du kannst alles auf Exponentialfunktionen ĂŒbertragen.

f(x) = - e^{-x}

1. g(x) = e^x Spiegeln an der y-Achse. → h(x) = e^{-x}

2. h(x) spiegeln an der x-Achse → f(x) = - e^{-x}

3. Weil f ' (x) = -(-e^{-x}) = e^{-x}, hast du bei 1. bereits f ' (x).

Wie gehe ich den bei Aufgaben wie bei 13.C vor?

Also Aufgaben mit dem Faktor (1/e)^x davor?

f(x) = (1/e)^x + e    | Potenzgesetze

= e^{-x} + e

1. g(x) = e^x an der y-Achse spiegeln. --> h(x) = e^{-x}

2. h(x) um e = 2.7... in y-Richtung verschieben ---> f(x) = e^{-x} + e

f ' (x) = -e^{-x}

1. wie oben.

2. h(x) an der x-Achse spiegeln.

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

1 Antwort
2 Antworten
Gefragt 11 MĂ€r 2018 von mala98
2 Antworten
Gefragt 3 Okt 2017 von gast1990

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community