$$ \, [k^2 \cdot t +t^2]\,_{k}^{k+1} = 9 $$
$$ \, [k^2 \cdot (k+1) +(k+1)^2] - \, [k^2 \cdot k +k^2] = 9 $$
$$ \, [k^3 +k^2 +(k+1)^2] - \, [k^3 +k^2] = 9 $$
$$ \, k^3 +k^2 +(k+1)^2 - \, k^3 -k^2 = 9 $$
$$ \, (k+1)^2 = 9 $$
$$ \, k+1 = \pm 3 $$
$$ \, k_{1,2} = \pm 3 -1 $$
$$ \, k_{1} = +2 $$
$$ \, k_{2} = -4 $$