a)
Es gilt:
SIN(x) = (e^{i·x} - e^{- i·x}) / (2·i)
COS(x) = (e^{i·x} + e^{- i·x}) / 2
SIN(x)^3·COS(2·x)^2
= ((e^{i·x} - e^{- i·x}) / (2·i))^3 · ((e^{i·2·x} + e^{- i·2·x}) / 2)^2
= (- e^{3·i·x}/(8·i) + 3·e^{i·x}/(8·i) - 3·e^{- i·x}/(8·i) + e^{- 3·i·x}/(8·i)) * (e^{2·i·2·x}/4 + e^{- 2·i·2·x}/4 + 1/2)
= 7·e^{i·x}/(32·i) - 7·e^{- i·x}/(32·i) - 5·e^{3·i·x}/(32·i) + 5·e^{- 3·i·x}/(32·i) + 3·e^{5·i·x}/(32·i) - 3·e^{- 5·i·x}/(32·i) - e^{7·i·x}/(32·i) + e^{- 7·i·x}/(32·i)
= 7/16·SIN(x) - 5/16·SIN(3·x) + 3/16·SIN(5·x) - 1/16·SIN(7·x)