0 Daumen
702 Aufrufe

Aufgabe A1 - Standardabweichung vergleichen:

Ordnen Sie die Verteilungen aufsteigend nach der Größe der Standardabweichung. Schätzen, begründen und rechnen Sie gegebenenfalls nach.

blob.png


Aufgabe A2:

Zwei Verteilungen werden durch Parameter charakterisiert.

a) In den Klassen 10 a und \( 10 \mathrm{~b} \), die jeweils aus 25 Schülern bestehen, wurden die Leistungen jedes Schülers im Weitsprung ermittelt. Die Zufallsgrößen A und B ordnen jeweils einem zufällig ausgewählten Schüler der Klasse 10a bzw. 10b seine Sprungweite in Meter zu. Für die Erwartungswerte der beiden Zufallsgrößen gilt \( E(A)=E(B) \), für die Standardabweichungen \( \sigma(A)<\sigma(B) \). Erklären Sie anschaulich, was diese beiden Beziehungen für die Verteilungen der Sprungweiten bedeuten.

b) Eine Zufallsgröße \( X \) kann fünf unterschiedliche Werte annehmen. Geben Sie eine Wahrscheinlichkeitsverteilung der Zufallsgröße \( X \) so an, dass der Erwartungswert zwischen dem kleinsten und dem zweitkleinsten Wert dieser Zufallsgröße liegt.

Avatar von

1 Antwort

+2 Daumen
 
Beste Antwort

A1:

Ich mache die Berechnung mal für (I) vor. Du solltest es dann für (II) und (III) nachmachen. Wenn du dann die Standardabweichung heraus hast kannst du sie vergleichen. Probiere dann zu verstehen warum bei der entsprechenden Verteilung die Standardabweichung hoch bzw. niedrig ist.

Erwartungswert E(X) = 2·3/24 + 3·1/24 + 4·5/24 + 5·7/24 + 6·2/24 + 7·4/24 + 8·2/24 = 5

Varianz nach Definition V(X) = (2 - 5)^2·3/24 + (3 - 5)^2·1/24 + (4 - 5)^2·5/24 + (5 - 5)^2·7/24 + (6 - 5)^2·2/24 + (7 - 5)^2·4/24 + (8 - 5)^2·2/24 = 3

Varianz nach dem Verschiebungssatz V(X) = 2^2·3/24 + 3^2·1/24 + 4^2·5/24 + 5^2·7/24 + 6^2·2/24 + 7^2·4/24 + 8^2·2/24 - 5^2 = 3

Standardabweichung σ = √3


A2 a)

Du hast in Aufgabe A1 ja verschiedene Verteilungen mit gleichem Erwartungswert und unterschiedlicher Standardabweichung gehabt.

Was besagt denn die Standardabweichung einer Verteilung? Was besagt es z.B. im Extremfall wenn die Standardabweichung sehr klein (0) ist und wenn sie sehr groß ist.

Skizziere vielleicht mal wie unter A1 zwei Verteilungen mit X im Bereich von 1 bis 9. Eine mit einer Standardabweichung die 0 ist und einmal eine bei der die Standardabweichung sehr groß ist.

Genau das ist in A2 a) ja gefragt. Du solltest also zu A und B eventuell zwei Verteilungen skizzieren die den gleichen Erwartungswert aber unterschiedliche Standardabweichung haben. Dann solltest du kurz dazuschreiben warum du so vorgegangen bist.

A2 b)

Nimm eine Verteilung die die Werte von 1 bis 5 annehmen kann und Schreibe zu jedem Wert der Zufallsgröße eine wahrscheinlichkeit auf. Die Summe der Wahrscheinlichkeiten sollte 1 ergeben.

Die Wahrscheinlichkeiten sollten so sein, dass der Erwartungswert jetzt zwischen 1 und 2 liegt.

Z.B.

P(X = 1) = 0.8

P(X = 2) = P(X = 3) = P(X = 4) = P(X = 5) = 0.05

Avatar von 488 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community