Ok, ich habe da jetzt folgendes gemacht:
Die Eckpunkte sind gewesen:
A( 1;2;-1) B(-3;0;3) C(1;2;7) D(5;4;3)
Erstmal habe ich AB und CD gebildet:
gAB: x= (1;2;-1) + ε (-4;-2;4) .... AB= (-4;-2;4)
gCD: x= (1;2;7) + σ (4;2;-4) .... CD= (4;2;-4)
Und dann hab ich AB= CD gleichgesetzt:
(-4;-2;4) = t (4;2;-4)
-4 = 4t -> t= - 1
-2 = 2t -> t= - 1
4 = -4T -> t= -1
Da t immer gleich ist folgt daraus Parallelität der Seiten. Das Viereck ist ein Rhombus.
Kann man das so machen, bzw. ist das so richtig?