f(x) = (x^2 - a^2) / (x^2 + a^2) = 1 - 2·a^2/(x^2 + a^2)
f'(x) = 4·a^2·x / (x^2 + a^2)^2
f''(x) = 4·a^2·(a^2 - 3·x^2) / (x^2 + a^2)^3
Symmetrie: Erkennbare Achsensymmetrie
Nullstellen Zähler = 0
x^2 - a^2 = 0 --> x = -a ∨ x = a
Y-Achsenabschnitt f(0)
f(0) = - a^2 / a^2 = -1
Extrempunkte f'(x) = 0
4·a^2·x = 0 --> x = 0 --> TP(0 | -1)
Wendepunkte f''(x) = 0
4·a^2·(a^2 - 3·x^2) = 0
a^2 - 3·x^2 = 0 --> x = ± √3/3·a
f(√3/3·a) = - 1/2 --> WP(± √3/3·a | - 1/2)