0 Daumen
206 Aufrufe

Aufgabe:

a) Es seien \( U_{1}, U_{2} \) und \( U_{3} \) Untervektorräume eines endlich dimensionalen \( \mathbb{K} \)-Vektorraums \( V \). Leiten Sie eine Formel für \( \operatorname{dim}\left(U_{1}+U_{2}+U_{3}\right) \) her.

b) Es seien \( U_{1}, U_{2}, U_{3} \) Untervektorräume von \( \mathbb{R}^{3} \) mit \( U_{i} \cap U_{j}=\{0\} \) für alle \( i, j \in\{1,2,3\} \) mit \( i \neq j \). Beweisen oder widerlegen Sie die Gleichung:

\( \sum \limits_{i \in\{1,2,3\}} U_{i}=\bigoplus_{i \in\{1,2,3\}} U_{i} \)

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community