Aufgabe - Lineare Abbildungen:
Sei \( V=\left\{f: \mathbb{R} \longrightarrow \mathbb{R} \mid \exists a, b, c \in \mathbb{R} \forall x \in \mathbb{R} f(x)=a x^{2}+b x+c\right\} \) der Vektorraum aller quadratischen Funktionen und die Abbildung \( \varphi: V \longrightarrow \mathbb{R}^{3} \) durch \( \varphi(f)=(f(-1), f(0), f(1)) \) definiert
a) Zeigen Sie, dass \( \varphi \) eine lineare Abbildung ist und begründen Sie (z.B. durch Konstruktion der Umkehrabbildung \( \varphi^{-1} \) ), dass diese Abbildung bijektiv ist.
b) Sei die Abbildung \( \psi: V \longrightarrow \mathbb{R}^{4} \) durch \( \psi(f)=(f(-1), f(0), f(1), f(2)) \) definiert.
Bestimmen Sie eine Basis des Bildes \( \operatorname{Im} \psi \) (dafür muss man nicht viel rechnen, aber die Lösung sollte kurz begründet werden).