$$ \frac{ \partial \Lambda}{\partial x}(x,y,\lambda)=2x +\lambda \cdot 2x$$$$ \frac{ \partial \Lambda}{\partial y}(x,y,\lambda)=2y -\lambda $$ $$ \frac{ \partial \Lambda}{\partial \lambda}(x,y,\lambda)=x^2-y+1$$
Die 2. Ableitungen:
$$ \frac{ \partial \Lambda}{\partial x\partial x}(x,y,\lambda)=2 +\lambda \cdot 2$$
$$ \frac{ \partial \Lambda}{\partial x\partial y}(x,y,\lambda)=0 $$
$$ \frac{ \partial \Lambda}{\partial x \partial \lambda}(x,y,\lambda)=2x $$
$$ \frac{ \partial \Lambda}{\partial y\partial x}(x,y,\lambda)=0$$
$$ \frac{ \partial \Lambda}{\partial y\partial y}(x,y,\lambda)=2 $$
$$ \frac{ \partial \Lambda}{\partial y \partial \lambda }(x,y,\lambda)=-1$$
$$ \frac{ \partial \Lambda}{\partial \lambda \partial x}(x,y,\lambda)=2x$$
$$ \frac{ \partial \Lambda}{\partial \lambda \partial y}(x,y,\lambda)=-1$$
$$ \frac{ \partial \Lambda}{\partial \lambda \partial \lambda}(x,y,\lambda )=0$$