Hi, es gibt zwar schon eine Antwort, aber ich kann ja mal etwas ausführlicher formulieren. Zuerst einmal vereinfachen wir etwas: $$\int_{\infty}^{-\infty} \frac{-d \alpha}{(x^2+y^2+ \alpha^2)^{3/2}} = \int_{-\infty}^{\infty} \frac{da}{(u^2+a^2)^{3/2}}$$ mit $$u^2 = x^2+y^2 \ .$$ Jetzt substituieren wir $$a = u \ tan (x)$$ mit $$da = u \ sec^2(x)dx \ .$$Man kann auf diese Substitution durch einige Überlegungen kommen, jedoch finde ich, dass es ziemlich schwierig ist, dies zu erkennen. Damit erhalten wir $$ \int \frac{u \ sec^2(x)dx}{u^2+u^2 tan^2(x))^{3/2}} \ .$$ Aus der Beziehung $$sin^2(x)+cos^2(x)=1$$ folgt durch Multiplikation mit $$\frac{u^2}{cos^2(x)}$$ der Ausdruck $$u^2tan^2(x)+u^2=u^2sec^2(x)$$ (deswegen die Substitution :P). Dies eingesetzt in unser Integral liefert: $$ \int_{-\infty}^{\infty} \frac{u \ sec^2(x)dx}{(u^2sec^2(x))^{3/2}} = \frac{1}{u^2} \int_{-\infty}^{\infty} cos(x)dx \ .$$
Der Rest ist nur noch integrieren, resubstituieren und Grenzen auswerten.