In egos hosentasche befinden sich 10 münzen, neun echte mit Kopf und Zahl und eine falsche die beidseitig zahl aufweist. Egon zieht zufällig eine dieser Münzen und wirft sie mehrfach. Es erscheint die folfe ZZZK. Bestimmen sie für jeden teilfoge d.h. Z, ZZ, ZZZ, ZZZK die wahrscheinlichkeit, dass ds sich um eine echte münze handelt.
P(echt | Z) = (9/10 * 0.5) / (9/10 * 0.5 + 1/10 * 1) = 9/11 = 81.82%
P(echt | ZZ) = (9/10 * 0.5^2) / (9/10 * 0.5^2 + 1/10 * 1^2) = 9/13 = 69.23%
P(echt | ZZZ) = (9/10 * 0.5^3) / (9/10 * 0.5^3 + 1/10 * 1^3) = 9/17 = 52.94%
P(echt | ZZZK) = (9/10 * 0.5^3 * 0.5) / (9/10 * 0.5^3 * 0.5 + 1/10 * 1^3 * 0) = 1 = 100%
Was heisst dieses / alsp P (echt/ZZ)
P(echt | zz)
Die Wahrscheinlichkeit das die Münze echt ist wenn zweimal hintereinander Zahl geworfen wurde. Das ist die bedingte Wahrscheinlichkeit. Satz von Bayes.
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos