Aus der Linearität folgt:
$$ h\left( -2x+3y \right) =h\left( -2x \right) +h\left( 3y \right) =-2\cdot h\left( x \right) +3\cdot h\left( y \right) \\=\begin{pmatrix} -4 \\ -2 \end{pmatrix}+\begin{pmatrix} -9 \\ 6 \end{pmatrix}=\begin{pmatrix} -13 \\ 4 \end{pmatrix} $$
Wenn x und y linear abhängig wären, so müssten es h(x) und h(y) sein. Im Umkehrschluss folgt aus der linearen Unabhängigkeit von h(x) und h(y), dass auch x und y linear unabhängig sein müssen.