0 Daumen
973 Aufrufe

Ich habe Probleme bei dem Induktionsanfang. Wenn ich n=3 wähle bekomme ich heraus das n2^n^2 nicht größer ist als 10^n. Wenn ich 2^ 3^ 2 rechne muss ich da nicht die Potenzen multiplizieren? In meinen Übungsunterlagen werden die Potenzen normal potenziert. Hoffe ich konnte mein Problem verständlich ausdrücken.

$$ { n2 }^{ { n }^{ 2 } }>{ 10 }^{ n }\quad \quad n\in N\quad n\ge 3 $$

Avatar von

https://www.mathelounge.de/57408/vollstandige-induktion-n-2-n-hoch-2-10-n

sieht ganz ähnlich aus wie deine Ungleichung. Schau auch die Diskussion dort mal durch.

ja hab ich leider zu spät gesehen . Danke

1 Antwort

0 Daumen
 
Beste Antwort

$$2^{3^2}=2^9=512$$ den den üblichen Schreibkonventionen für Potenzen.

Avatar von

mein tachenrechner multipliziert die Potenzen miteinander.dann bekomm ich 64 heraus.Ich versteh nicht was jetzt richtig ist.

Gibst du das auch richtig in den Taschenrechner ein?

Die meisten CAS lesen linksbündig,sprich 2^3^2 wird interpretiert als (2^3)^2.

jd130 haf vermutlich einen Caret-Konflikt und meint

" 2^ 3^ 2 wird interpretiert als (23)2 "

Die automatische Umwandlung kannst du nur verhindern, wenn du nach dem ^ einen Abstand reinzwängst.

habs denk ich verstanden.

Vielen Dank euch beiden.

Bitte. Die Caret-Umwandlung wurde, so wie ich verstanden habe, aus ästhetischen Gründen entwickelt, als mathelounge noch primär für Schüler der ca. 10, Klasse gedacht war.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community