f(x) = x2
g(x) = m·x
Schnittstellen f(x) = g(x)
x2 = m·x
x2 - m·x = 0
x·(x - m) = 0
x = 0 oder x = m
Fläche
d(x) = g(x) - f(x) = m·x - x2
D(x) = m·x2/2 - x3/3
D(m) - D(0) = m·m2/2 - m3/3 = 36 --> m = 6 [als einzige reelle Lösung]
Die Gerade lautet damit
g(x) = 6·x