Berechnung über den Kosinussatz
c^2 = a^2 + b^2 - 2·a·b·cos(gamma)
gamma = arccos((a^2 + b^2 - c^2)/(2·a·b))
1/2*EC = 1/2·√(5^2 + 4^2 + 3^2) = √12.5
EG = √(5^2 + 4^2) = √41
alpha = arccos((a^2 + b^2 - c^2)/(2·a·b))
alpha = arccos(((√12.5)^2 + (√12.5)^2 - (√41)^2)/(2·(√12.5)·(√12.5)))
alpha = arccos(-16/25) = 129.79°
EC = √(5^2 + 4^2 + 3^2) = √50
EB = √(5^2 + 3^2) = √34
beta = arccos((a^2 + b^2 - c^2)/(2·a·b))
beta = arccos((√50^2 + (4)^2 - (√34)^2)/(2·√50·(4)))
beta = arccos(√0.32) = 55.55