Ellipse:
\( \frac{x^2}{a^2} +\frac{y^2}{b^2}=1\) \(y=\red{-\frac{4}{9}}x+\frac{25}{3}\), \(P(\blue{12}|\orange{3})\):
\( \frac{144}{a^2} +\frac{9}{b^2}=1\) \( 9a^2=b^2\cdot (a^2-144)\) \( b^2=\frac{9a^2}{a^2-144}\)
\( \frac{x^2}{a^2} +\frac{y^2}{\frac{9a^2}{a^2-144}}=1\)
\( \frac{x^2}{a^2} +\frac{y^2(a^2-144)}{9a^2}=1\)
Implizites Differenzieren:
\(f'(x)=-\frac{f_x(x,y)}{f_y(x,y)} \)
\(f_x(x,y)=\frac{2x}{a^2}\) \(f_y(x,y)=\frac{2y(a^2-144)}{9a^2}\)
\(f'(x)=-\frac{\frac{2x}{a^2}}{\frac{2y(a^2-144)}{9a^2}} \)
\(\red{-\frac{4}{9}}=-\frac{\frac{2\cdot \blue{12}}{a^2}}{\frac{2\cdot \orange{3}(a^2-144)}{9a^2}}= -\frac{\frac{4}{a^2}}{\frac{(a^2-144)}{9a^2}}=-\frac{36}{a^2-144}\)
\(\red{\frac{1}{9}}=\frac{9}{a^2-144}\)
\(a^2=225\) \( b^2=\frac{9\cdot 225}{225-144}=25\)
\( \frac{x^2}{225} +\frac{y^2}{25}=1\)