Beweisen Sie, dass die folgenden Formeln gelten:
(a) \( 2^{n}=\left(\begin{array}{l}{n} \\ {0}\end{array}\right)+\left(\begin{array}{c}{n} \\ {1}\end{array}\right)+\left(\begin{array}{c}{n} \\ {2}\end{array}\right)+\ldots+\left(\begin{array}{c}{n} \\ {n-1}\end{array}\right)+\left(\begin{array}{c}{n} \\ {n}\end{array}\right) \)
(b) \( 0 =\left(\begin{array}{c}{n} \\ {0}\end{array}\right)-\left(\begin{array}{c}{n} \\ {1}\end{array}\right)-\left(\begin{array}{c}{n} \\ {2}\end{array}\right)-\ldots+(-1)^{n-1}\left(\begin{array}{c}{n} \\ {n-1}\end{array}\right)+(-1)^{n}\left(\begin{array}{c}{n} \\ {n}\end{array}\right) \)