Induktionsanfang: n = k
$$ \begin{aligned}\frac { \left( k+1 \right) ! }{ \left( k-k \right) !\left( k+1 \right) ! } &=\sum _{ m=k }^{ k }{ \frac { m! }{ \left( m-k \right) !k! } } \\ \frac { \left( k+1 \right) ! }{ \left( k-k \right) !\left( k+1 \right) ! } &=\frac { k! }{ \left( k-k \right) !k! } \\ 1&=1 \end{aligned} $$
Induktionsschritt: n → n+1
Nach Induktionsvoraussetzung gilt:
$$ \frac { \left( n+1 \right) ! }{ \left( n-k \right) !\left( k+1 \right) ! } =\sum _{ m=k }^{ n }{ \frac { m! }{ \left( m-k \right) !k! } } \quad \quad \quad \quad | +\frac { \left( n+1 \right) ! }{ \left( n+1-k \right) !k! } $$
$$ \begin{aligned} \frac { \left( n+1 \right) ! }{ \left( n-k \right) !\left( k+1 \right) ! } +\frac { \left( n+1 \right) ! }{ \left( n+1-k \right) !k! } =\sum _{ m=k }^{ n+1 }{ \frac { m! }{ \left( m-k \right) !k! } } \\ \frac { \left( n+1 \right) !\left( n+1-k \right) +\left( n+1 \right) !\left( k+1 \right) }{ \left( n+1-k \right) !\left( k+1 \right) ! } =\sum _{ m=k }^{ n+1 }{ \frac { m! }{ \left( m-k \right) !k! } } \\ \frac { \left( n+1 \right) !\left( n+1-k+k+1 \right) }{ \left( n+1-k \right) !\left( k+1 \right) ! } =\sum _{ m=k }^{ n+1 }{ \frac { m! }{ \left( m-k \right) !k! } } \\ \frac { \left( n+1 \right) !\left( n+2 \right) }{ \left( n+1-k \right) !\left( k+1 \right) ! } =\sum _{ m=k }^{ n+1 }{ \frac { m! }{ \left( m-k \right) !k! } } \\ \frac { \left( n+2 \right) ! }{ \left( n+1-k \right) !\left( k+1 \right) ! } =\sum _{ m=k }^{ n+1 }{ \frac { m! }{ \left( m-k \right) !k! } } \end{aligned} $$
w.z.b.w.