0 Daumen
314 Aufrufe

Leider war ich bei der letzten Vorlesung aus gesundheitlichen Gründen nicht anwesend, beim neuen Übungsblatt geht es um das Thema Interpolationspolynome. Können wir zusammen die folgende Aufgabe lösen?

Gegeben seinen die Punkte zk = (xk,yk) ∈ ℝ2 , k=1,...,4 duch z1=(-1,1), z2=(0,-2), z3=(1,1),z4=(2,0)

Bestimmen Sie das dazugehörige Interpolationspolynom
(i) mittels eines linearen Gleichungssystems.
(ii) mittels der Lagrange-Interpolation.

(i) hier habe ich keine genauen Vorstellung, was ich machen kann. Ich habe im Internet keine passende Erklärung gefunden...



(ii)

p3(x)=∑3 j=0   yjLj(x)=y0L0(x)+y1L1(x)+y2L2(x)+y3L3(x)

Wir suchen ein Polynom 3. Grades, da 4 Punkte gegeben sind, durch die das Polynom verläuft

L1(x)=

L2(x)=

L3(x)=

L4(x)=

Diese Gleichungen muss ich aufstellen und die entsprechenden x-Werte einsetzen. Danach muss ich die y-Werte und Gleichungen in die p3(x)=∑3 j=0   yjLj(x) eingeben und vereinfachen.



p3(x)=

Avatar von

kennt sich niemand mit dem Thema aus?

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community