\(\vec{a}\) = \( \begin{pmatrix} 1 \\ 1 \end{pmatrix}\) , \(\vec{b}\) = \( \begin{pmatrix} -7 \\ 0 \end{pmatrix}\)
\( \begin{pmatrix} 1 \\ 1 \end{pmatrix}\) • \( \begin{pmatrix} -7 \\ 0 \end{pmatrix}\) = 1 • (-7) + 1 • 0 = -7
| \( \begin{pmatrix} 1 \\ 1 \end{pmatrix}\) | = √(12 + 12) = √2 ,
| \( \begin{pmatrix} -7 \\ 0 \end{pmatrix}\) | = √( 02 + (-7)2) = 7
cos [ ∠ (\(\vec{a}\),\(\vec{b}\))] = [ \(\vec{a}\) • \(\vec{b}\) ] / [ | \(\vec{a}\)| • |\(\vec{b}\)| ] = -7 / (7 • √2) = -1 / √2
→ ∠ (\(\vec{a}\),\(\vec{b}\)) = 135°
Gruß Wolfgang