Nachstehend eine kleinschrittige Lösung:
$$ \begin{aligned} \frac { u(r-w-l) }{ u(r-w-l)+w } &= \frac { r-c-l }{ r-l } \qquad | ·(u(r-w-l)+w) \\ \frac { u(r-w-l)·(u(r-w-l)+w) }{ u(r-w-l)+w } &= \frac { (r-c-l)·(u(r-w-l)+w) }{ r-l } \\ \frac { u(r-w-l)·(u(r-w-l)+w) }{ u(r-w-l)+w } &= \frac { (r-c-l)·(u(r-w-l)+w) }{ r-l } \\ \frac { u(r-w-l)·1 }{ 1 } &= \frac { (r-c-l)·(u(r-w-l)+w) }{ r-l } \\ u(r-w-l) &= \frac { (r-c-l)·(u(r-w-l)+w) }{ r-l } \quad \quad \quad |\quad ·(r-l) \\ u(r-w-l)·(r-l) &= \frac { (r-c-l)·(u(r-w-l)+w)·(r-l) }{ r-l } \\ u(r-w-l)·(r-l) &= \frac { (r-c-l)·(u(r-w-l)+w)·1 }{ 1 } \end{aligned} $$
Brüche sind vorerst beseitigt:
\( u·(r-w-l)·(r-l) = (r-c-l)·(u·(r-w-l)+w) \)
Nun ausmultiplizieren:
$$ \begin{aligned} (ur-uw-ul)·(r-l) &= (r-c-l)·((ur-uw-ul)+w) \\ (ur-uw-ul)·r-(ur-uw-ul)·l &= (r-c-l)·(ur-uw-ul+w) \\ (urr-uwr-ulr)-(url-uwl-ull) &= r·(ur-uw-ul+w)-c·(ur-uw-ul+w)-l·(ur-uw-ul+w) \\ urr-uwr-ulr-url+uwl+ull &= urr-uwr-ulr+wr-(cur-cuw-cul+cw)-(lur-luw-lul+lw) \\ u{ r }^{ 2 }-uwr-ulr-url+uwl+ull &= u{ r }^{ 2 }-uwr-ulr+wr-cur+cuw+cul-cw-lur+luw+lul-lw \\ u{ r }^{ 2 }-uwr-ulr-url+uwl+ull &= u{ r }^{ 2 }-uwr-ulr+wr-cur+cuw+cul-cw-lur+luw+lul-lw \\ -url+uwl+ull &= wr-cur+cuw+cul-cw-lur+luw+lul-lw \\ 0 &= wr-cw-lw-cur+cuw+cul-lur+luw+lul \quad +url-uwl-ull \\ | \text{ u ausklammern} \\ 0 &= wr-cw-lw - u·(cr+cw+cl-lr+lw+ll + rl-wl-ll) \\ | \text{ subtrahiere -(wr-cw-lw)} \\ -(wr-cw-lw) &= -u·(cr+cw+cl-lr+lw+ll + rl-wl-ll) \qquad | ·(-1) \\ (wr-cw-lw) &= u·(cr+cw+cl-lr+lw+ll + rl-wl-ll) \\ | :(cr+cw+ \cdots-ll) \\ \text{| u steht nun alleine:} \\ u &= \frac{wr-cw-lw}{cr+cw+cl-lr+lw+ll + rl-wl-ll} \\ \text{| Terme fallen weg:} \\ u &= \frac{wr-cw-lw}{cr+cw+cl \color{#00F}{-lr+lw+ll + rl-wl-ll}} \\ u &= \frac{wr-cw-lw}{cr+cw+cl} \\ \text{| w im Zähler ausklammern: } \\ u &= \frac{w·(r-c-l)}{cr+cw+cl} \\ \text{| c im Nenner ausklammern: } \\ u &= \frac{w·(r-c-l)}{c·(r+w+l)} \\ \text{| fertig} \end{aligned}$$
Siehe auch Bruchgleichungen / Bruchterme sowie das Video:
https://www.youtube.com/watch?v=ddRb_FGbR0A