0 Daumen
980 Aufrufe

Ich möchte wissen wie ich den Parameter a von der Funktion f bestimme, wenn ich die Kreisgleichung sowie die Funktion f gegeben habe. Dabei soll a so gewählt werden, dass der Kreis die Funktion f im Ursprung berührt. 


Ich hoffe die Frage ist so verständlich.

Ich möchte wissen wie ich vorzugehen habe.


Danke fürs anschauen :)

Avatar von

2 Antworten

0 Daumen

Bitte stelle doch mal die ganze Aufgabe ein.

Zunächst mal sollte die Funktion mit dem Kreis den Ursprung gemeinsam haben. Zusätzlich hat die Funktion im Ursprung die Gleiche Steigung wie der Kreis.

Das sind die Bedingungen womit man auch a ausrechnen kann.

Avatar von 489 k 🚀

Hi, danke fürs Antworten!

Gut : Gegeben ist die Funktion f(x)=( x2)+ax  ; a ist eine reelle Zahl. Die Kreisgleichung ist k: ((x-3)2)+((y-4)2)=8

Wie ist a zu wählen, wenn der Kreis die Funktion f im Punkt (0/0) berühren soll?


meine Idee: ich setze y=x2+ax in die Kreisgleichung ein, bekomme ich dann das: (x-3)2+(x2+ax-4)2=8

ist so der Ansatz richtig?

Dein Kreis geht aber nicht durch den Ursprung !

Wie richtig erkannt worden ist geht der Kreis nicht durch den Ursprung. Ich änder daher mal die Kreisgleichung so ab das sie durch den Ursprung geht.

(x - 3)^2 + (y - 4)^2 = 25

Der Kreis hat den Mittelpunkt M(3|4) und geht durch den Punkt P(0|0). Bestimme die Steigung zwischen M und P.

(4 - 0)/(3 - 0) = 4/3 --> Senkrecht dazu wäre -3/4

Die Steigung der Funktion im Ursprung sollte also -3/4 sein

f(x) = x^2 + a·x

f'(x) = 2·x + a

f'(0) = a = -3/4

f(x) = x^2 - 3/4·x

Dann könntest du mal den Kreis und die Funktion zeichnen.

Bild Mathematik

Warum soll -3/4 senkrecht dazu sein?
Die gedachte Linie vom Ursprung zum Mittelpunkt  des
Kreises bei ( 3 | 4 ) hat eine Steigung von 4 / 3.

Senkrecht dazu gilt ( die Tangente )
m1 = -1 / m2
4 / 3 = - 1 / ( m2 )
m2 = - 3 / 4
0 Daumen
Melde dich ruhig nochmal, stelle die Frage erneut, oder schicke mir einen Kommentar.  Dein Kreis



     (  x  -  3  )  ²  +  (  y  -  4  )  ²  =  8     (  1  )

     x  =  y  =  0  ===>  25  =  8     (  2  )    ;   Widerspruch

    dein Kreis verläuft gar nicht durch den Ursprung.
Avatar von

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community