Funktion & Ableitungen
f(x) = x·LN(x)^2
f'(x) = LN(x)^2 + 2·LN(x)
f''(x) = 2·LN(x)/x + 2/x
Nullstellen: f(x) = 0
x·LN(x)^2 = 0 --> x = 1
Extrempunkte: f'(x) = 0
LN(x)^2 + 2·LN(x) = LN(x)·(LN(x) + 2) = 0
x = 1
LN(x) + 2 = 0 --> x = 1/e²
f(1) = 0 --> TP(1 | 0)
f(1/e²) = 4/e² --> HP(1/e² | 4|e²)
Wendepunkte: f''(x) = 0
2·LN(x)/x + 2/x = 2·(LN(x) + 1)/x = 0
LN(x) + 1 = 0 --> 1/e
f(1/e) = 1/e --> WP(1/e | 1/e)