"Eine gebrochen-rationale Funktion ist punktsymmetrisch zum Ursprung,wenn im Zähler nur gerade Exponenten stehen, und im Nenner nur ungerade Exponenten stehen (oder umgekehrt)."
"Eine gebrochen-rationale Funktion ist achsensymmetrisch zur y-Achse, wenn alle Variablen im Zähler und Nenner gerade Exponenten haben, oder wenn alle Variablen im Zähler und Nenner ungerade Exponenten haben."
Nun stieß ich auf eine gebrochenrationale Funktion auf die das scheinbar nicht zutrifft, warum?
Sie lautet: f(x)= (2-3x)/(x+1). Sie ist weder zum Ursprung noch zur Y-Achse symmetrisch. Laut den genannten Sätzen müsste sie doch aber achsensymmetrisch zur Y-Achse sein, oder nicht?