ich versuche es mal zu erklaeren:
Du darfst ohne die Determinante zu veraendern, das Vielfache einer Zeile zu einer anderen Zeile addieren.
Du hast aber teilweise eine Zeile mit (-1) multipliziert und dann das Vielfache einer anderen Zeile addiert. Dadurch hast Du jeweils das Vorzeichen der Determinante geaendert und zwar genau 3 mal.
Ich habe die gleiche Rechnung wie Du gemacht, jedoch nicht z.B. die Zeile mal 3 und dann die andere subtrahiert, sondern die gleiche Zeile mal (-3) und dann zu der anderen addiert. Dadurch komme ich auf
⎝⎜⎜⎜⎛13−2−320−40−871450123IIIIIIIV⎠⎟⎟⎟⎞
⎝⎜⎜⎜⎛10002−606−831−2−190123II−3⋅IIII+2⋅IIV+3⋅I⎠⎟⎟⎟⎞
Hier hattest Du nicht II−3⋅I sondern −II+3⋅I. Da kann man dann auch den Vorzeichenwechsel in der Zeile erkennen.
⎝⎜⎜⎜⎛10002−600−831−2120124IV+II⎠⎟⎟⎟⎞
⎝⎜⎜⎜⎛10002−600−831−2001216IV−6⋅III⎠⎟⎟⎟⎞
Link zu Rechenregeln: http://www.chemgapedia.de/vsengine/vlu/vsc/de/ma/1/mc/ma_11/ma_11_01…
Du kannst ja auch zusaetzlich an kleineren Matrizen oder mit Hilfe eines Rechners ueberpruefen, was ein Vorzeichenwechsel in einer Zeile für Auswirkungen hat.
Gruss