komme hier gerade nicht auf die richtigen Nebenbedingungen, meine sind:
x1 + 10x2 = 0 und x3 + 6x4 = 0
aber damit komme ich ja nicht auf ganzzahlige Ergebnisse, lese ich die Aufgabe irgendwie falsch?
Es geht mir eigentlich echt nur um die Nebenbedingungen, der Rest ist ja dann einfach.
Aufgabe
Ein Unternehmen produziert \( x_{1} \) Töpfe, \( x_{2} \) Stäbchen, \( x_{3} \) Grill-Geräte und \( x_{4} \) Pfannchen, die als Fondue-Sets und Raclette-Sets verkauft werden. Ein Fondue-Set besteht aus einem Topf und zehn Stäbchen. Ein Raclette-Set besteht aus einem Grill-Gerat und sechs Pfännchen. Die Mengen \( x_{1}, x_{2}, x_{3} \) und \( x_{4} \) sind so zu wählen, dass sich nur vollständige Sets ergeben. (Hinweis: Daraus ergeben sich zwei Nebenbedingungen.) Die Erlösfunktion ist gegeben durch
$$ E\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-4 x_{1}^{2}+12 x_{1}+\frac{1}{50} x_{2}^{2}-3 x_{3}^{2}+5 x_{4} $$
Bestimmen Sie mit Hilfe der Eliminationsmethode den Maximalwert der Erlösfunktion. Überprüfen Sie auch die hinreichende Bedingung.
Hinweis: Nach der Elimination ergibt sich eine Funktion von zwei Variablen.