Aufgabe:
Ein Möbelhersteller produziert a Tischplatten (rechteckig), b Tischbeine (dreikantig), c Hockersitzplatten (kreisförmig) und d Hockerbeine (rund). Ein Tisch wird gefertigt aus einer Tischplatte und vier Tischbeinen, ein Hocker aus einer Hockerplatte und drei Hockerbeinen. Die Mengen a, b, c, d sind so zu wählen, dass sich nur vollständi- ge Möbelstücke ergeben. (Hinweis: Daraus ergeben sich zwei Nebenbedingungen). Die Erlösfunktion ist gegeben durch
E(a, b, c, d) = 2a2 + 16a − \( \frac{1}{4} \) b2 − c2 + 6d.
Bestimmen Sie mit Hilfe der Eliminationsmethode die Maximalstelle und den Maximal-
wert der Erlösfunktion. Überprüfen Sie auch die hinreichende Bedingung.
Hinweis: Nach der Elimination ergibt sich eine Funktion von zwei Variablen.
Problem/Ansatz:
Ich weiß nicht wie ich nach der Nebenbedingung vorgehen soll, vielleicht habe ich sie auch nicht korrekt formuliert.
Meine Nebenbedingungen wären: Tisch = a + 4 b
Hocker = c + 3 d
Wie geht es weiter?