0 Daumen
1,8k Aufrufe
Kann mir jemand eventuell den Lösungsweg dieser beiden Aufgaben nennen?
Verwirrt mich alles extremst..


Eine Angestellte zahlt 25 Jahre vorschüssig 850 € bei einer Versicherung.

Dafür möchte sie 12 J. lang eine nachschüssige Rente ausgezahlt bekommen.
Die 1. Auszahlung soll 6 Jahre nach der letzten Einzahlung erfolgen.
Wie hoch ist die Rente bei einen Zinssatz von 4,5 %.

Ein Vater will für sein Kind ein Kapital von 15.000 € durch 20 gleiche nachschüssige Jahreseinlagen, die mit 4 % verzinst werden, ansammeln. Nach der 10. Zahlung sinkt der Zinssatz auf 3,5 %.
Um wie viel muss er die jährlichen Zahlungen erhöhen, um das Ziel zu erreichen?

Danke :)
Avatar von

1 Antwort

0 Daumen

Eine Angestellte zahlt 25 Jahre vorschüssig 850 € bei einer Versicherung. 

Rentenendwert = r·(p + 1)·((p + 1)^n - 1)/p = 850·(0.045 + 1)·((0.045 + 1)^25 - 1)/0.045 = 39585.05 Euro

Dafür möchte sie 12 J. lang eine nachschüssige Rente ausgezahlt bekommen. Die 1. Auszahlung soll 6 Jahre nach der letzten Einzahlung erfolgen. Wie hoch ist die Rente bei einen Zinssatz von 4,5 %.

39585.05 * (1 + 0.045)^4 = 47205.91 Euro

Rente = Barwert·p·(p + 1)^n/((p + 1)^n - 1) = 47205.91·0.045·(0.045 + 1)^12/((0.045 + 1)^12 - 1) = 5176.89 Euro

Als Literatur über Rentenrechnung empfehle ich dir:

- http://www.finanzmathe.at (kostenlos)
http://www.amazon.de/mn/search?url=search-alias%3Daps&field-keywords=3486591592%7C3486585681

Avatar von 488 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community