Fortsetzung der Rechnung im Kommentar oben. Bereits gefunden: z1=0
z^5 = (1-√3*i) =
r= √(1^2 + 3) = 2
φ= arctan(-√3/1) = -60° = 300°
360°/5= 72°
φ/5 = 60° z2= 20.2(cos 60° + isin60°) = 0.5743 + 0.9948*i
60° + 72°= 132° z3=20.2(cos 132° + isin 132°) = -0.6691 +0.9806*i
132°+72° = 204° z4= 20.2(cos204° + isin204°) = -1.0493 - 0.4672*i
204°+72°=276° z5= 20.2(cos276° + isin276°) = 0.1201 -1-1424*i
276°+72°=348° z6=20.2(cos348° + isin348°) = 1.1236 - 0.2388*i